Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 465: 133039, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38006856

RESUMEN

Handling flue dust in an environmentally friendly manner has become an urgent task for pollution prevention in the copper industry. Here, driven by the low-carbon notion, we report a process that enables the selective retrieval of multiple metals (As, Cu, Pb, Zn, and Bi) from copper smelting flue dust (CSFD). This process employed low-temperature roasting to separate arsenic from heavy metals, thereby eliminating the tedious separation steps required by existing processes. Subsequently, Zn and Cu were dissolved in water, while Pb and Bi were left as a solid residue. We achieved 98.23% extraction of Cu via Zn cementation at a micro-voltage of 0.50 V. Utilizing the difference in solubility, Bi was selectively dissolved from the residue using a NaCl-HCl medium, which enabled the subsequent production of metallic Bi through electrowinning. Finally, more than 99% of Pb in the solid was reduced to elemental Pb by mechanochemical reduction. Through optimized process conditions, high-purity As2O3 (99.04%), lead ingot (99.95%), metallic copper (94.16%), and bismuth (99.20%) were obtained. Our economic assessment revealed significant advantages, demonstrating the industrial feasibility of this process. Consequently, this study presents an effective and cost-efficient system for CSFD disposal while minimizing the environmental impact and fostering a circular economy.

2.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38004465

RESUMEN

This study aimed to synthesize and characterize DTX-mPEG-PLA-NPs along with the development and validation of a simple, accurate, and reproducible method for the determination and quantification of DTX in mPEG-PLA-NPs. The prepared NPs were characterized using AFM, DLS, zetasizer, and drug release kinetic profiling. The RP-HPLC assay was developed for DTX detection. The cytotoxicity and anti-clonogenic effects were estimated using MTT and clonogenic assays, respectively, using both MCF-7 and MDA-MB-231 cell lines in a 2D and 3D culture system. The developed method showed a linear response, high precision, accuracy, RSD values of ≤2%, and a tailing factor ≤2, per ICH guidelines. The DTX-mPEG-PLA-NPs exhibited an average particle size of 264.3 nm with an encapsulation efficiency of 62.22%. The in vitro drug kinetic profile, as per the Krosmeyers-Peppas model, demonstrated Fickian diffusion, with initial biphasic release and a multistep sustained release over 190 h. The MTT assay revealed improved in vitro cytotoxicity against MCF-7 and MDA-MB-231 in the 2D cultures and MCF-7 3D mammosphere cultures. Significant inhibitions of the clonogenic potential of MDA-MB-231 were observed for all concentrations of DTX-mPEG-PLA-NPs. Our results highlight the feasibility of detecting DTX via the robust RP-HPLC method and using DTX-mPEG-PLA-NPs as a perceptible and biocompatible delivery vehicle with greater cytotoxic and anti-clonogenic potential, supporting improved outcomes in BC.

3.
Polymers (Basel) ; 14(11)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35683936

RESUMEN

Membrane fouling is a continued critical challenge for ultrafiltration membranes performance. In this work, polyether sulfone (PES) ultrafiltration (UF) membranes were fabricated via phase-inversion method by incorporating varying concentrations of APTMS modified activated carbon (mAC). The mAC was thoroughly characterized and the fabricated membranes were studied for their surface morphology, functional groups, contact angle, water retention, swelling (%) porosity, and water flux. The hydrophilicity of mAC membranes also resulted in lower contact angle and higher values of porosity, roughness, water retention as well as water flux. Also, the membranes incorporated with mAC exhibited antibacterial performance against model test strains of gram-negative Ecoil and gram-positive S. aureus. The antifouling studies based on bovine serum albumin protein (BSA) solution filtration showed that mAC membranes have better BSA flux. The higher flux and antifouling characteristics of the mAC membranes were attributed to the electrostatic repulsion of the BSA protein from the unique functional properties of AC and network structure of APTMS. The novel mAC ultrafiltration membranes developed and studied in present work can provide higher flux and less BSA rejection thus can find antifouling applications for the isolation and concentration of proteins and macromolecules.

4.
MethodsX ; 8: 101539, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754807

RESUMEN

A method to develop thermo-kinetic (TK) diagrams for the Cu-H2O-acetate and Cu-H2O systems is described. Conventional Eh-pH diagrams, also known as Pourbaix diagrams, are developed based on the thermodynamic stability of component species, typically in aqueous media. TK diagrams are an improvement on Eh-pH diagrams as they also describe the kinetics of electrochemical processes. These diagrams are developed by using data from linear scan voltammetry of Cu rotating disk electrodes exposed to aqueous media of different pH. By applying the same procedure, the TK diagrams can be developed for other metals or mineral systems exposed to aqueous media containing ligands. To ensure reproducibility and reconstruction of the TK diagrams for other metal/mineral/electrolyte systems, some important experimental considerations are highlighted in this study. These TK diagrams are useful to evaluate the corrosion of metals, the leaching performance of minerals and to predict the suitable conditions for metal recycling processes. Briefly, this article explains:•Important experimental considerations that could affect the kinetics of electrochemical processes.•A method to construct TK diagrams with examples of the Cu-H2O-acetate and Cu-H2O systems.•With overlaid Eh-pH diagrams, TK diagrams explain both the thermodynamic stability of component species and the kinetics of the electrochemical processes.

5.
Acta Biomater ; 113: 660-676, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32553917

RESUMEN

In the field of biodegradable metallic materials, rapid and non-uniform biodegradation, caused by uncontrolled corrosion rates, is a potential shortcoming. Among the prominent biodegradable materials, magnesium is an attractive choice, however, it is prone to rapid dissolution. In contrast, iron possesses a slow dissolution rate. To approach the middle ground, instead of making magnesium more corrosion-resistant, the less-explored approach of making iron less corrosion-resistant is employed here. In this study, iron, and magnesium, having contrasting corrosion rates, are combined via magnetron co-sputtering. The idea of combinatorial synthesis is employed to fabricate two model nanostructured Fe-Mg samples, i.e. CSFM-1 (Fe85Mg15), and CSFM-2 (Fe65Mg35), exhibiting a controlled and uniform degradation in phosphate-buffer saline solution. The structural characterization of the two samples demonstrates a substitutional solid solution of bcc-Fe-Mg in CSFM-1 and an amorphous short-range-ordered structure in the CSFM-2 sample. Electrochemical investigation shows increased corrosion rates for the two Fe-Mg samples in comparison to pure Fe, validated by relatively active corrosion potentials, higher corrosion current densities, faster anodic dissolution, and lower charge transfer resistances, governed by chemical composition and non-equilibrium nanostructures. Finally, nano-indentation testing of the two samples reveals relatively higher hardness and lower elastic moduli, a suitable combination for bio-implants. STATEMENT OF SIGNIFICANCE: The use of Mg as a biodegradable in-vivo  implant material is problematic because of its high dissolution rate and potential for hydrogen gas generation. This is the first time that the idea of combinatorial synthesis is employed to fabricate two model nanostructured Fe-Mg systems, i.e. CSFM-1 (Fe85Mg15), and CSFM-2 (Fe65Mg35), exhibiting a controlled and uniform degradation. The structural characterization of the two systems demonstrates a substitutional solid solution of bcc-Fe-Mg in CSFM-1 and an amorphous short-range-ordered structure in the CSFM-2 system. Electrochemical investigation shows increased biodegradation rates for the two Fe-Mg systems in comparison to pure Fe, validated by relatively active corrosion potentials, higher corrosion current densities, faster anodic dissolution, and lower charge transfer resistances, governed by chemical composition and non-equilibrium nanostructures.


Asunto(s)
Hierro , Nanoestructuras , Aleaciones , Corrosión , Ensayo de Materiales , Solubilidad
6.
Mater Sci Eng C Mater Biol Appl ; 113: 110980, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32487394

RESUMEN

The selective laser melting of Ti6Al4V would induce definite changes in the microstructure that may affect its corrosion properties. Microstructural examination showed the formation of relatively thin beta (ß) lamella in selective laser melted (SLM) Ti6Al4V compared to wrought Ti6Al4V. X-ray diffraction analysis (XRD) analysis confirmed the presence of alpha and beta phases in both SLM and wrought Ti6Al4V. However, the higher concentration of the ß phase in SLM Ti6Al4V compared to wrought Ti6Al4V was evident in the microstructure. As candidate dental implant materials, the corrosion behavior of both SLM and wrought Ti6Al4V was assessed in artificial saliva (AS) and deionized water (DI) containing various species i.e. fluoride (F), calcium chloride (CaCl2) and lactic acid (LA). Electrochemical impedance spectroscopy and potentiodynamic polarization analysis was carried out to estimate the corrosion behavior of SLM and wrought Ti6Al4V at room temperature. SLM Ti6Al4V offered better corrosion resistance than wrought Ti6Al4V in all solutions at pH > 6. However, wrought Ti6Al4V comparatively presented high corrosion resistance in AS + LA, DI + CaCl2 and DI + LA solutions (pH < 6). The lower dissolution rate of SLM Ti6Al4V (at pH > 6) was attributed to larger ß content in the microstructure compared to wrought Ti6Al4V.


Asunto(s)
Aleaciones/química , Implantes Dentales , Rayos Láser , Titanio/química , Aleaciones/metabolismo , Cloruro de Calcio/química , Corrosión , Espectroscopía Dieléctrica , Fluoruros/química , Concentración de Iones de Hidrógeno , Ácido Láctico/química , Ensayo de Materiales , Saliva Artificial/química , Temperatura , Titanio/metabolismo , Agua/química
7.
ChemSusChem ; 11(9): 1533-1548, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29520996

RESUMEN

The development of a hybrid system capable of storing energy and the additional benefit of Cu extraction is discussed in this work. A fixed bed flow cell (FBFC) was used in which a composite negative electrode containing CuFeS2 (80 wt %) and carbon black (20 wt %) in graphite felt was separated from a positive (graphite felt) electrode by a proton-exchange membrane. The anolyte (0.2 m H2 SO4 ) and catholyte (0.5 m Fe2+ in 0.2 m H2 SO4 with or without 0.1 m Cu2+ ) were circulated in the cell. The electrochemical activity of the Fe2+ /Fe3+ redox couple over graphite felt significantly improved after the addition of Cu2+ in the catholyte. Ultimately, in the CuFeS2 ∥Fe2+ /Cu2+ (CFeCu) FBFC system, the specific capacity increased continuously to 26.4 mAh g-1 in 500 galvanostatic charge-discharge (GCD) cycles, compared to the CuFeS2 ∥Fe2+ (CFe) system (13.9 mAh g-1 ). Interestingly, the specific discharge energy gradually increased to 3.6 Wh kg-1 in 500 GCD cycles for the CFeCu system compared to 3.29 Wh kg-1 for the CFe system in 150 cycles. In addition to energy storage, 10.75 % Cu was also extracted from the mineral, which is an important feature of the CFeCu system as it would allow Cu extraction and recovery through hydrometallurgical methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...